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A proof of Pomeranchuk's theorem regarding the high-energy limits of the total cross sections is presented. 
The proof consists of assuming the usual analyticity for the forward elastic amplitudes and the assumption 
that these amplitudes become pure imaginary in the high-energy limit. This proof does not require that the 
total cross sections have finite limits. It is also shown that the total cross-section a(s) as a function of s, the 
total cm. energy squared, behaves asymptotically as a(s) = <r(x>)-t-5/si+0(l/s) when 6(°°) is nonzero, 
where 5 is some constant. This asymptotic form is based upon a more specific assumption that high-energy 
elastic scattering is described by an effective complex and energy-dependent potential which satisfies a dis
persion relation in the energy variable. However, the above asymptotic form is valid independently of the 
dependence of this effective potential on the spacial coordinate. It is argued that the term 8/s* in the above 
asymptotic form should be regarded as genuinely asymptotic, while the term of the order of 1/s is not. 
According to this criterion, the available high-energy p—p data are not so close to the asymptotic region as 
the 7r±—p data in the same laboratory momentum range. 

1. INTRODUCTION AND SUMMARY 

WE denote by a(s) and a(s) the total cross sections 
for a particle and its antiparticle, respectively, 

incident on the same target as functions of s, the total 
cm. energy squared. Pomeranchuk's theorem1 states 
that a(s) and a(s) approach the same limit as s—»<*> 
if they have finite limits. Several proofs2 of this theorem 
were given which consist of assuming the forward dis
persion relation together with some additional assump
tions. The experimental check3-4 on its validity is not 
yet conclusive, not only because of large experimental 
errors but also because nothing is known theoretically 
about the asymptotic forms of <r(s) and a(s). 

The purpose of this paper is to present another proof 
of this theorem and also the theoretical asymptotic 
forms of a(s) and a(s) which are given by (14) below. 
Besides its considerable generality and simplicity, our 
new proof does not require that the total cross sections 
have finite limits. We assume, as the alternative as
sumption, that the forward elastic amplitude becomes 
pure imaginary as s —» <*>. This is equivalent to assum
ing that high-energy elastic scattering becomes domi-
nantly absorptive. We show that our assumptions imply 
that <r(s)o^&(s)<xs°, s~~2, etc., as s—»°o. This result is 
even stronger than Pomeranchuk's theorem. 

The asymptotic forms (14) are based upon a more 
specific assumption, that high-energy elastic scattering 
is described by an effective complex and energy-
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dependent potential V(r,s) of the type proposed pre
viously.5 Since this model cannot8 give rise to zero 
asymptotic limit of o-(s), the asymptotic forms (14) 
apply to the case when o-(oo) and ^(oo) are nonzero. 
However, these forms are valid independently of the 
dependence of V(r,s) on the spatial coordinate r. The 
asymptotic forms (14) are due to the dispersion relation 
in s satisfied by V(r,s), which is in turn due to the micro
scopic causality.5 The comparison of (14) with experi
ments3,4 and the relating discussion are given in Sec. 4. 

2. ASYMPTOTIC LIMITS OF TOTAL 
CROSS SECTIONS 

Let A (s) and A (s) be the forward elastic amplitudes 
for the particle and its antiparticle, respectively. We 
normalize them such that A (s)~sa (s) and A(s)d=Lsa(s) 
as s—>oo. The crossing relation which connects these 
amplitudes is written as 

A(u)=A(s), (1) 

if we introduce u, the covariant total energy squared in 
the crossed channel. One knows that s+u=2(m2+mf2)i 

where m and w! are the masses of the colliding particles. 
The usual analyticity assumption implies that A (s) and 
Ais) are analytic in s except for finite numbers of poles 
and cuts which are given by co>s>s0 and co>u^>uo 
for A{s) and by <x>>s>u0 and oo>^>s0 for A(s), 
respectively, where so and UQ axe some constants. If 
8(s) is the phase of A(s) along the cut, co>^>^o, and 
6(s) is that of A(s) along the cut, <*>>s>Uo, the 
phase representations6 for A(s) and A(s) are written 

6 Y. Nambu and M. Sugawara, Phys. Rev. Letters 10, 304 
(1963). 

6 M. Sugawara and A. Tubis, Phys. Rev. Letters 9, 355 (1962); 
Phys. Rev. 130, 2127 (1963). The two-dimensional generalization 
of the phase representation is given by M. Sugawara and Y. 
Nambu, Phys. Rev. 131, 2333 (1963). 
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as 

Px(s) is rw 8{s')ds' * f" Ks')dsf 1 
A(s) = exp - / h - / , 

P2O) ITT J8Q s'(s'-s) T JUQ sf(s'-u) J 

8(sf)ds' u r 8(s')dsf 
(2) 

A(s) = -z—-exP\~ + - / 
P 2 W [TTJUO S'(s' — S) T J 8Q S'{s'—U)\ 

where Pi(s)'s and Pi(s)'s are finite real polynomials. 
The crossing relation (1) then implies that these poly
nomials satisfy 

Pi(u)/P2(u)=P1(s)/P2(s). (3) 

Therefore, the asymptotic limits7 of A (s) and A (s) 
are given by 

p5o-|5(oo)/7rp^0-|5(oo)/7r 

A 0) -» csn\ — - expft8(oo)], 

r^oi5(oo)/T^o' i(oo)/7T 0 l 
exppS(oo)], 

(4) 

where n is an integer due to the polynomials in (2) and 
c is some real constant. It is assumed in deriving (4) 
that 8(s) and 8(s) approach their limits not too slowly. 
This is equivalent to assuming that the amplitudes A (s) 
and A (s) exhibit the power behavior in s as 5 —> <*>. It 
is clearly seen in (4) that <r( *>) and a( °o ) do not have to 
be the same as long as 8( 00) and 5( 00) remain arbitrary. 

Our additional assumption, that the forward elastic 
amplitude becomes pure imaginary as s—*«>, implies 
that 8( 00) and §(00) can only be ±|7r except for some 
integer multiples of TT. It then follows that the limits in 
(4) are both proportional to sm, m being an integer. One 
can argue that this integer m must be unity or less. Let 
A(s,i) be the scattering amplitude as a function of s 
and t, the covariant momentum-transfer squared, nor
malized such that A (s,t=0) — A (s). In the case when 
A(s,t)<*smp(t) as s—>oo, where p(t) is sufficiently 
peaked in t around 2=0, one estimates the total elastic 
cross section, aei(s) oc f°\A(s,t)\2dt/s2, as proportional 
to s2m~2. Since <rGi(s)<<r(s), one finds 2m—2<m—l, 
that is m<\. One can argue similarly and conclude the 
same, also, in the cases when A (s,t) oc sm/3(t) exp (at Ins) 
or even sm(lns)nfi(i) exp(atflns) as 5—»oo? where a is a 
positive constant and n is an integer. 

One then proves Pomeranchuk's theorem by direct 
computations. First, the case of m= 1 can be attained 
in (4) by various combinations of 8 (.00) and 8(00). 
However, one finds always that the limits in (4) are the 
same. For example, when 5 ( 00) = T/2 and § (00) = — w/2, 
one finds that n=l and the limits in (4) are both 
ics(so/u0)

1/2, implying that er( 00) = &( 00) = c(so/uo)1/2. In 
7 The asymptotic limits of the exponential factors in (2) are 

derived in Ref. 6. 

the case of m~0, however, one finds always that the 
limits in (4) have different signs. Since this contradicts 
the optical theorem, the case of w=0 is not permissible. 
One finds similarly that the case of m= — 1 is permissible 
and that <T(S)C^&(S)CCS-2 as s—> 00 in this case. This 
way one proves that the total cross sections behave 
asymptotically only as s°, s~2, etc., and always a(s)c^a(s) 
as s —-»00. 

It is likely that the forward elastic amplitudes for 
strongly interacting particles become pure imaginary 
in the high-energy limit. If this is actually the case, 
our proof indicates that Pomeranchuk's theorem is 
valid in all pairs of the total cross sections which involve 
strongly interacting particles. 

3. ASYMPTOTIC FORMS OF TOTAL 
CROSS SECTIONS 

We assume in this section that high-energy elastic 
scattering is described by an effective complex and 
energy-dependent potential V(r,s) of the type proposed 
previously.5 According to our previous work,5 the re
quirements that V(r,s) does not vanish at s= 00 and 
becomes pure imaginary as s-+<x> and that V(r,s) is 
analytic in s, imply that ImV(r,s)diverges as s—-><x> 
as s1/2, sz/2, etc. We assume in this paper that ImV(r,s) 
diverges as (s)1/2, because this is probably the only 
physically plausible behavior. Then, V(r,s) satisfies a 
dispersion relation 

V(r,s) 
s r°° ImV(r,s')ds' 

= V(r,0)+- / hpoles. 
If J a S'(s' — S) 

(5) 

Suppose that ImV(r,s)c^—(s)l/2Vi(r) for s>b, where 
Vi(r) is a real positive function of r, and b is some large 
number. Then, the principal value integral in (5) ap
proaches a finite limit as s —»00 ? since 

' I m F M ^ s rb ImV(r,s')ds' s r imv {r,s )ds s r° ImV [f 
-P =~ / 
T J a S'(s'—S) IT J a s'(s' 

i 
s) 

s r (.s')mVi(r)ds' 
-p 

s'(s'-s) 
- ( 1 / x ) 

J a 
X ImV(r,s')ds'/s'-V(.by/2/Tr)Vi(r). (6) 

Therefore, V(r,s) behaves as 5—><» as 

V(r,s)^VR{r)-i(sy<Wi(r), (7) 

where VR(T) is some real, finite function of r. However, 
the sign of VR(T) cannot be determined by that of Vi(r) 
alone. 

The asymptotic form (7) of F(r,s) then determines 
the asymptotic form of the phase of the forward ampli-
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tude A (s) by means of the well-known formula8 

(8) 

where V(r,s) is given by (7). One easily finds from (8) 
that the phase 8(s) of A (s) behaves as s —» °o as 

8(s)-8(oo)~8/(s)1/2
} (9) 

where 8 is a real constant. 
The asymptotic form (9) of the phase should be valid 

for both 8(s) and 8(s) in (2) because both A (s) and A (s) 
are the forward elastic amplitudes. In_order to compute 
the asymptotic forms of A(s) and A(s) by means of 
(2) and (9), one rewrites9 (2) as 

M*)< 
) r •Jo -|8<°°>/,rr Mo -f<-<°)/T 

-Q\ y(s), d o ) 
) LSQ—SJ LUQ—UJ 

where Q is a positive real constant and 

7(^) = exp 
11 r -<fc' 

s — s 

l r00 ?(*')-«(«>) 
+ - / ; ds1 

s'—u 
(ID 

and a similar expression for A(s). In terms of (9) for 
s>si and 5(Y) — 5(oo)~5/(s)1/2 for s>uh where Si and 
U\ are some large, but finite numbers, one finds after 
simple computation that 

y(s)- 1-
(Sy < ) +i-

(s) 1/2 
(12) 

as s —> oo. One thus obtains our final results, 

A(s)~-> wo-(oc) 
LI ( 

5 

LI (*)i/2 W J (j)»«J 

i(5)^^(^)rii+—-+o(-)\+i—i, 
LI (s)1/2 Wl 0)1/2J 

(13) 

and, therefore, 

W1 / 2 

8 
(14) 

^)-><r(oo)["l+ +0^-)] 
L 0)1'2 \5/J 

a s ^ —> oo. 
8 The expression (8) is the same as the equation (7) of Ref. 5. 
9 This is explained in full detail in Ref. 6. 

We remark that the l/(s)1/2 terms in (13) and (14) 
depend only on the asymptotic phase (9) and, therefore, 
are entirely due to the asymptotic form (7) of the ef
fective potential. However, the 1/s terms in (13) and 
(14) depend also on the low-energy aspects, such as 
the branch points SQ and UQ. Therefore, it seems reason
able to regard those energy regions as asymptotic in 
which the 1/s terms in the total cross sections become 
insignificant. 

We cannot estimate even the signs of 8 and 8 in 
(13) and (14) because they depend on both VR(T) and 
Vi(r) in (7). However, we can argue that 8=8 at least 
in the case of -K^—p scsttering. li 8^8, then <r(s)—a(s) 
approaches zero as (s)~1/2. This means that A (s) —A (s) 
diverges as (s)l/2. However, A(s)—A(s) is known em
pirically to satisfy a no-subtraction dispersion relation 
in the case of ^—p scattering. Therefore, one must 
have 8=8. In fact, the asymptotic forms (14) become 
consistent with this empirical fact if 5=5. 

4. COMPARISON WITH EXPERIMENTS 

We now compare with (14) the experimental cross 
sections for 7r±—pz, p—pA, and p—p* scattering in the 
lab momentum range 10 to 20 BeV/c [in s, 20 to 40 
(BeV)2]. All these data clearly do not satisfy (14) 
without the 1/s terms. This is because o-ir~p(s)—air

+
p(s) 

is still appreciable and o-pP(s) — (TPP(S) decreases too 
rapidly to fit a (s)~1/2 dependence in spite of large 
experimental errors. Therefore, we have done the fol
lowing analysis. We put, for simplicity, 8=8 in (14) 
also for p—p and p—p scattering. Thus, we fit a(s) — a(s) 
by a pure 1/s term. We then fit a(s)+a(s) by a constant 
plus a (s)~1/2 term alone, also for simplicity. The results 
in mb and (BeV)2 units are 

r 0.48 0.71-j 
0 - ^ ( ^ = 23.2 1+ =F , 

L (sY'2 s J 

r 1.6 5.6-] 
(TPP(s), <Tpp(s) = 35\ l-\ =F— . 

L (s)1/2 s J 

W 1 

1.6 5.6" 
(15) 

These formulas fit the data very well, though they should 
not be taken too seriously because the experimental 
errors are large and also the arbitrary choices are made 
for the parameters. It is, however, interesting to note 
that <rpp(s) in (15) varies from 38 mb very slowly to 
39 mb over the momentum range concerned. 

The major point of our asymptotic forms (14) is 
that both a(s) and cr(s) have relatively slow approaches 
to their limits at s= oo. Furthermore, it is the asymptotic 
phase of the amplitude for its antiparticle (not the par
ticle itself) that determines the asymptotic form of the 
total cross section. According to (14), therefore, one 
should judge whether the energy is high enough to be 
asymptotic, not merely by a nearly constant behavior 
of <T(S), but rather by observing both a(s) and a(s) to 
see if they behave similarly in the sense of (14). For 
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this reason and also based upon the fit (15), we are 
inclined to conclude that available p—p data are not so 
close to the asymptotic region as the -x^—p data for the 
same available momentum range. We recall that the 
model underlying the asymptotic forms (14) predicts5 

no shrinkage in the forward peak of high-energy elastic 
scattering. Therefore, we understand at least qualita
tively the reason why the recent experimental data10 

indicate no shrinkage in ir±—p scattering, but appreci
able shrinkage in p—p scattering. 

If one combines the fit (15) with (13), one can esti
mate a deviation from the optical point as 

|Re^(^)/Im4(^)|2c-62A--l% (15) 
10 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. 

Russel, and L. C. L. Yuan, Phys. Rev. Letters 10, 376 and 543 
(1963). 

I. INTRODUCTION 

ANALYSES of the binding-energy data for the 
hypernuclei with A^3 have been made to deter

mine characteristics of the A-nucleon interaction.1-4 Un
certainties in these analyses have precluded the deduc
tion of a complete set of parameters characterizing these 
interactions; in particular, it has not been possible to 
establish the presence of A-nucleon-nucleon three-body 
interactions. When three-body interactions have been 
neglected, these analyses have led to the specification of 

*This work was partly supported by a grant from National 
Science Foundation. 
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at the lab momentum 10 BeV/c for ^—p scattering. 
This figure violently disagrees with 23±10%, a figure 
suspected in a recent report.11 The same estimate gives 
a deviation of 13% for p—p scattering at the same lab 
momentum. 

We remark finally that all our arguments are valid 
also when the particles have spins. Our arguments then 
apply individually to the amplitudes with the spin 
directions specified and the corresponding total cross 
sections. Therefore, our arguments apply also to the 
spin-averaged ones. 

We thank Professor L. Van Hove for pointing out an 
error in our earlier version of this paper. 

11 S. Brandt, V. T. Cocconi, D. R. 0 . Morrison, A. Wroblewski, 
P. Fleury, G. Kayas, F. Muller, and C. Pelletier, Phys. Rev. 
Letters 10, 413 (1963). 

parameters characterizing central two-body 5-wave 
potentials which include the effect of possible tensor 
components.1-3 The resulting two-body potentials are 
strong and highly spin-dependent. It has been noted 
that the deduced spin dependence depends critically 
upon the assumption that the effect of three-body inter
actions is negligible in the binding of hypernuclei.1'4-5 

Bodmer and Sampanthar4 have recently made a quanti
tative connection between the assumed strength of 
three-body potentials of the form 

(T»"e*)(«r'.o*)7(Ri>R,,RA), (1) 

and the spin dependence of the corresponding two-body 
interactions required to account for the binding energies 
of the lightest hypernuclei. [In (1), 1, 2 and A denote the 
coordinates of the two nucleons and the A particle, 
respectively.] Previously, Weitzner5 had similarly deter
mined the required strength of a potential of the form 

«H. Weitzner, Phys. Rev. 110, 593 (1958). 
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The two-pion-exchange contribution to the three-body A-nucleon interaction is derived from a static 
model and also from covariant perturbation theory. It is found that the local part of the potential cal
culated by the latter method is similar to that part of the static-model potential which corresponds to 
the formation of lambda-antisigma pairs in intermediate states. This potential is noncentral and has the form 
(/c1,/c2)(o,1Ti)(a2T2)/(/'i/2), where o1* and T1' are the spin and isotopic-spin operators for the two nucleons, 
and ri and tz are the A-nucleon separation vectors. An estimate is made of the importance of this potential 
in the binding of the hypertriton by calculating its expectation value with respect to hypertriton wave func
tions corresponding to two-body interactions with hard cores. In these calculations, the three-body potential 
is found to contribute less than 5% of the expectation value of the total A-nucleon interaction. 


